http://www.truthout.org/issues_06/printer_100907EB.shtml
New Study Shows Genetically Engineered Corn Could Pollute Aquatic Ecosystems
Environmental News Network
Monday 08 October 2007
Bloomington, Indiana - A study by an Indiana University environmental science professor and several colleagues suggests a widely planted variety of genetically engineered corn has the potential to harm aquatic ecosystems. The study is being published this week by the journal Proceedings of the National Academies of Sciences.
Researchers, including Todd V. Royer, an assistant professor in the IU School of Public and Environmental Affairs, established that pollen and other plant parts containing toxins from genetically engineered Bt corn are washing into streams near cornfields.
They also conducted laboratory trials that found consumption of Bt corn byproducts produced increased mortality and reduced growth in caddisflies, aquatic insects that are related to the pests targeted by the toxin in Bt corn.
Caddisflies, Royer said, "are a food resource for higher organisms like fish and amphibians. And, if our goal is to have healthy, functioning ecosystems, we need to protect all the parts. Water resources are something we depend on greatly."
Other principal investigators for the study, titled "Toxins in transgenic crop byproducts may affect headwater stream ecosystems," were Emma Rosi-Marshall of Loyola University Chicago, Jennifer Tank of the University of Notre Dame and Matt Whiles of Southern Illinois University. It was funded by the National Science Foundation.
Bt corn is engineered to include a gene from the micro-organism Bacillus thuringiensis, which produces a toxin that protects the crop from pests, in particular the European corn borer. It was licensed for use in 1996 and quickly gained popularity. In 2006, around 35 percent of corn acreage planted in the U.S. was genetically modified, the study says, citing U.S. Department of Agriculture data.
Before licensing Bt corn, the U.S. Environmental Protection Agency conducted trials to test its impact on water biota. But it used Daphnia, a crustacean commonly used for toxicity tests, and not insects that are more closely related to the target pests, Royer said.
Royer emphasized that, if there are unintended consequences of planting genetically engineered crops, farmers shouldn't be held responsible. In a competitive agricultural economy, producers have to use the best technologies they can get.
"Every new technology comes with some benefits and some risks," he said. "I think probably the risks associated with widespread planting of Bt corn were not fully assessed."
There was a public flap over the growing use of Bt corn in 1999, when a report indicated it might harm monarch butterflies. But studies coordinated by the government's Agriculture Research Service and published in PNAS concluded there was not a significant threat to monarchs. Around that time, Royer said, he and his colleagues wondered whether the toxin from Bt corn was getting into streams near cornfields; and, if so, whether it could have an impact on aquatic insects.
Their research, conducted in 2005 and 2006 in an intensely farmed region of northern Indiana, measured inputs of Bt corn pollen and corn byproducts (e.g., leaves and cobs) in 12 headwater streams, using litter traps to collect the materials. They also found corn pollen in the guts of certain caddisflies, showing they were feeding on corn pollen.
In laboratory trials, the researchers found caddisflies that were fed leaves from Bt corn had growth rates that were less than half those of caddisflies fed non-Bt corn litter. They also found that a different type of caddisfly had significantly increased mortality rates when exposed to Bt corn pollen at concentrations between two and three times the maximum found in the test sites.
Royer said there was considerable variation in the amount of corn pollen and byproducts found at study locations. And there is likely also to be significant geographical variation; farmers in Iowa and Illinois, for example, are planting more Bt corn than those in Indiana. The level of Bt corn pollen associated with increased mortality in caddisflies, he said, "could potentially represent conditions in streams of the western Corn Belt."
University of Illinois at Urbana-Champaign August 22, 2007
Team Tracks Antibiotic Resistance From Swine Farms To Groundwater
Science Daily - The routine use of antibiotics in swine production can have unintended consequences, with antibiotic resistance genes sometimes leaking from waste lagoons into groundwater.
A research team tracked the movement of tetracycline resistance genes from wastewater lagoons to groundwater at two Illinois hog farms. Red circles mark the locations of groundwater testing wells on Site A, the more impacted facility. The lagoon is unlined. (Credit: Photo couttesy R.I. Mackie)
--------------------------------------------------------------------------------
In a new study, researchers at the University of Illinois report that some genes found in hog waste lagoons are transferred - "like batons" - from one bacterial species to another. The researchers found that this migration across species and into new environments sometimes dilutes - and sometimes amplifies - genes conferring antibiotic resistance.
The new report, in the August issue of Applied and Environmental Microbiology, tracks the passage of tetracycline resistance genes from hog waste lagoons into groundwater wells at two Illinois swine facilities.
This is the first study to take a broad sample of tetracycline resistance genes in a landscape dominated by hog farming, said principal investigator R.I. Mackie. And it is one of the first to survey the genes directly rather than focusing on the organisms that host them. Mackie is a professor in the department of animal sciences and an affiliate of the Institute for Genomic Biology.
"At this stage, we're not really concerned about who's got these genes," Mackie said. "If the genes are there, potentially they can get into the right organism at the right time and confer resistance to an antibiotic that's being used to treat disease."
Tetracycline is widely used in swine production. It is injected into the animals to treat or prevent disease, and is often used as an additive in hog feed to boost the animals' growth. Its near-continuous use in some hog farms promotes the evolution of tetracycline-resistant strains in the animals' digestive tracts and manure.
The migration of antibiotic resistance from animal feeding operations into groundwater has broad implications for human and ecological health. There are roughly 238,000 animal feeding operations in the U.S., which collectively generate about 500 million tons of manure per year. Groundwater comprises about 40 percent of the public water supply, and more than 97 percent of the drinking water used in rural areas.
Federal law mandates that animal facilities develop nutrient management plans to protect surface water and groundwater from fecal contamination. Most swine facilities hold the effluent in large, water-filled lagoons until it can be injected into the ground as fertilizer. Thanks to a change in the law in the late 1990s, new lagoons must be built with liners to prevent seepage. Swine facilities in operation prior to the new regulations are allowed to continue using unlined lagoons, however.
Some of these lagoons leak.
The researchers extracted bacterial DNA from lagoons and groundwater wells at two study sites over a period of three years. They screened these samples for seven different tetracycline resistance genes.
They found fluctuating levels of every one of the seven genes for which they screened in the lagoons. They also found that these genes were migrating from the lagoons to some of the groundwater wells.
It should be noted that many genes that confer antibiotic resistance occur naturally in the environment. Tetracycline is itself a bacterial product, employed by Streptomyces bacteria long before humans discovered its usefulness.
In order to determine the origin of the tetracycline resistance genes found in the groundwater, the researchers conducted a genetic analysis of one gene family, tet(W), in samples from the lagoons and from groundwater wells below (downgradient of) and above (upgradient to) the lagoons. They found that the variants of tet(W) genes in the upgradient, environmental control wells were distinct from those of the lagoons, while the wells downgradient of the lagoons contained genes consistent with both the background levels and those in the lagoons.
"There's a human impact on these sites that is superimposed on a natural signal," said postdoctoral research assistant Anthony Yannarell, an author on the study.
One of the two hog farms, "Site A," was more impacted by resistance genes from the lagoon, due to its hydrogeology. The site included two layers of sand - at about two meters and eight meters below the surface - through which groundwater flowed.
"Every time we looked in the lagoon, we saw all of the genes we were looking for," Yannarell said. "At Site A, all the wells that were closest to the lagoon almost always had every gene. As you got further from the lagoon you started to see genes dropping out."
The resistance genes were present at much higher levels - "an order of magnitude higher," said the authors - in the lagoon than in the contaminated wells. Most were diluted as they moved away from the lagoons in the groundwater.
There was one notable exception. A gene known as tet(C) was found at higher levels in some of the groundwater wells at Site A than in the lagoon. Its heightened presence was not consistent with background levels, indicating that something in the environment was amplifying this one gene, which had originated in the lagoon.
Perhaps the gene had migrated to a new organism, Yannarell said, to find a host that was more suited to conditions in the groundwater.
"What we are seeing is that the genes can travel a lot further than the bacteria," Mackie said. "It's a matter of getting the DNA into the right organism. It's a relay race."
Other authors on the study are postdoctoral research assistant S. Koike; Illinois State Geological Survey geochemist I.G. Krapac; research assistant H.D. Oliver; USDA Agricultural Research Service scientist and professor of crop sciences J.C. Chee-Sanford; and visiting professor of animal sciences R.I. Aminov.
Note: This story has been adapted from a news release issued by University of Illinois at Urbana-Champaign.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
To unsubscribe from the IOWA-TOPICS list, send any message to:
[log in to unmask]
Check out our Listserv Lists support site for more information:
http://www.sierraclub.org/lists/faq.asp
Sign up to receive Sierra Club Insider, the flagship
e-newsletter. Sent out twice a month, it features the Club's
latest news and activities. Subscribe and view recent
editions at http://www.sierraclub.org/insider/