This is the best article I've read on the honeybee demise issue. I edited it, but sorry, it's still long. Laurel Hopwood, Coordinator, Sierra Club Pollinator Protection Campaign http://www.eastbayexpress.com/oakland/whats-poisoning-the-bees/Content?oid=3939487&showFullText=tru What's Poisoning the Bees Toxic pesticides are killing honeybees and other pollinators - and our food supply stands to suffer. 6/3/2014 edited Chemical companies soon began coating the seeds of corn and other crops with neonic pesticides, a practice that became widespread in the early 2000s. Neonics are now used as seeds treatments on more than 140 crops - including most corn and a large portion of soy, wheat, and canola seeds. In the case of corn, the rise of neonic seed treatments occurred alongside the proliferation of genetically engineered crops. For the most part, "They don't sell the genetically modified seeds unless they are treated with the chemicals," said Susan Kegley, principal scientist with the Berkeley-based Pesticide Research Institute, explaining how Monsanto, Bayer, and Syngenta have created a system in which neonics are pervasive in our environment. While in the 1990s, only around 30 to 35 percent of total corn acreage in the United States (roughly 75 to 80 million acres) was treated with insecticides, by 2012, 94 percent (of 92 million acres) of corn seed planted in this country was treated with neonics, according to the Pesticide Action Network. Studies have linked neonics to bee health. In 2012, entomologists at Purdue University published research showing that in agricultural fields that used neonic-treated seeds, neonics were found in the soil and nearby plants. Researchers also found clothianidin, a neonic compound (which was responsible for poisoning Ellis' bees last year), in the bodies of dead bees found near hive entrances, while no detectable levels of clothianidin were found in healthy bees. In addition, researchers discovered that the bees living in these environments transported tainted maize pollen back to their hives. "If you wanted to design something that would kill bees, this is it," said Greg Hunt, who co-authored the Purdue study and is a professor of entomology at the university. The use of pre-treated seeds is so prevalent that farmers "don't have a choice," he added. "It's not the growers' fault. ... It's very difficult to get untreated seeds." When I spoke with Hunt last month, he said he had found roughly a thousand dead bees in front of his hive at his home in Indiana just a few days earlier. The reason, he suspected, was a farmer who had planted corn a third-of-a-mile away on a field surrounded by dandelions, which the bees feed on. Hunt said he even found an empty bag of corn kernels nearby, indicating the farmer had used the most toxic clothianidin seed treatment available. Just last month, Chensheng (Alex) Lu, associate professor of environmental exposure biology at the Harvard School of Public Health, published a study linking neonics to honeybee colony collapses, replicating findings he first published in a 2012 study. He observed three groups of six bee colonies each from October 2012 through April 2013: Two of the groups were treated with different neonic compounds (at doses far below established lethal levels) and a control group was left untreated. For the first several months, all of the colonies experienced declines typical for New England winters. But in January, the control colony population began to increase, as is normal, while the neonic-treated hives continued to decline. By April, half of the neonic-contaminated colonies were lost, while only one of the colonies in the control group, which appeared to have been infected by a parasite, did not survive. "We were very confident in our conclusions that the pesticides caused this problem," Lu told me. Ken Warchol, a sixth-generation beekeeper who managed the colonies in Lu's research and co-authored the study, said that neonics exacerbate other threats facing honeybees, such as mites and diseases. "There's no question that it's a deadly combination." He noted that in his commercial business, losses are consistently higher for hives located near farms treated with pesticides compared to hives located in suburban and urban areas. Numerous beekeepers I interviewed for this story echoed Warchol's experience. Even when bees aren't killed outright by neonics, they can suffer lingering effects from exposure to the pesticides. Ellis, for example, said that his colonies suffered for months after being initially exposed to pesticides. Part of the damage was due to the fact that the next cycle of bees was still feeding on pesticide-contaminated pollen, he said. A new state-by-state analysis of honey production data over time produced by the Pesticide Research Institute suggests there's a correlation between colony losses and the emergence of certain pesticides. The report compares rates of decline in honey production over the last two decades with rates of approval of neonic usage on different crops, and concludes that there's a correlation between the two. "Where they are planting corn and soy, it's a disaster," said Kegley. "These are declines of anywhere between 30 and 80 percent." But in areas where bees are able to forage on plants that have not been contaminated with neonics, honey production levels generally stayed the same or increased, she said. In light of the mounting evidence, the European Commission last year decided to enact a two-year ban on three neonics to give officials an opportunity to reevaluate the pesticide's potential harms to bees. For years, beekeepers and environmental activists (including Sierra Club) have called on the EPA to implement similar restrictions in the United States. So far, they haven't had any success. The lawsuit alleges that the EPA relied on manufacturers' inadequate studies in its approval of two neonic compounds - clothianidin and thiamethoxam. Furthermore, the suit alleges, the EPA violated the law in its refusal to suspend the usage of these pesticides despite knowing the hazards proven by independent research. Critics say the lack of proper risk assessment is woven into the agency's so-called "conditional registrations," by which regulators can approve a pesticide that meets certain standards but still requires more testing. The EPA insists it only registers safe products, but from the perspective of the agency's critics, pesticide manufacturers have repeatedly abused the conditional registration process and secured federal approval for the widespread and unsafe use of toxic chemicals. "We don't have the luxury of debating these questions for the next decade," said Tom Theobald, a Colorado beekeeper and co-plaintiff in the lawsuit. After 38 years in the industry, his honey business is no longer profitable due to repeated losses of his bees. "We are completely out of time." Theobald made headlines in 2010 when an EPA official sent him a memo - which he then leaked - that included concerns from the agency's own experts regarding "deficiencies" in a field study on the effects of clothianidin on honeybee hives. The study, which was funded by neonics manufacturer Bayer, found that the neonic seed treatments have no long-term effect on bees. In 2003, the EPA approved a conditional registration for the pesticide, with the condition being that Bayer must conduct a study evaluating the long-term toxicity of the pesticide on pollinators. But the beekeepers who have filed suit against the EPA allege that Bayer has failed to meet this requirement. "EPA knew from day one that there was this potential harm to pollinators and required [Bayer] to provide more information," said Sylvia Wu, a San Francisco-based staff attorney with the Center for Food Safety, a plaintiff in the suit. "[Bayer] hasn't produced it, but EPA has allowed the product to remain on the marketplace nonetheless." The Center for Food Safety, along with a number of advocacy groups and beekeepers, sued the EPA after the agency rejected their request in a 2012 petition to issue an emergency suspension of clothianidin. The lawsuit, filed last year in the US District Court for the Northern District of California, is winding its way through the courts. In April, a judge issued a ruling dismissing parts of the beekeepers' claims and allowing others to move forward. Concerns about bee health extend beyond the use of neonics. Research has increasingly demonstrated that the combined use of pesticides can lead to significantly increased toxicity levels in bees. In April, the Pollinator Stewardship Council reported that almond pollination in California led to devastating losses for beekeepers this year. The multibillion-dollar almond industry, which depends entirely on commercial beekeeping for pollination in late winter, brought roughly 1,300 beekeepers with a total of 1.7 million colonies to the state this season, according to the organization, which collects bee kill reports. Around 15 to 25 percent of those colonies were damaged, with losses totaling at least $64 million for the commercial beekeepers, the group said. The suspected culprit is a so-called "tank mix" of chemicals, which includes an insect growth regulator and fungicide. The EPA, however, generally does not consider the impact of pesticide mixtures on bee health. "None of this has been adequately studied or taken into consideration for registration purposes," said Penn State entomologist Frazier. He published research in 2012 showing that certain chemicals sprayed on almonds - including chemicals that are considered "inert" and not subject to any regulatory testing whatsoever - can impair honeybee learning. "They are completely ignoring it," Frazier said. What's more, the almond growers who applied the tank mixes this year followed official label guidelines, said Michele Colopy, program director of the Pollinator Stewardship Council. "Growers and farmers are being shortchanged by the labels just as much as the beekeepers." Asked about the bee deaths as a result of almond pollination, an EPA spokesperson wrote in an email that the cause and scope of the incident is currently under investigation, but if the agency finds that these chemicals pose "unreasonable adverse effects to the environment," then it "will move quickly to take appropriate regulatory action." The stakes are high for these companies. For example, Friends of the Earth's report noted that Bayer reported more than $10 billion in global sales from its pesticide and seed growth products in 2012. Its leading neonic product, a compound called imidacloprid, is worth $1.1 billion, according to a 2011 Journal of Agricultural and Food Chemistry article cited by Friends of the Earth's report. Bayer also has shared interests in clothianidin, which the journal article said is worth $439 million. The neonic product manufactured by the Switzerland-based Syngenta is a compound called thiamethoxam, which is worth $627 million, according to the report. Syngenta reported nearly $2 billion in total insecticide sales in 2013. St. Louis-based Monsanto, meanwhile, reported sales in its seeds and genomics division of $10.3 billion in fiscal year 2013. (Monsanto does not report financial data specific to seed treatments.) Neonics represent just a portion of these companies' massive operations. In 2013, Bayer's CropScience division reported sales of roughly $12 billion and gross profits of roughly $2.2 billion. In the same year, Monsanto reported sales of $14.86 billion and gross profits of $7.7 billion, while Syngenta reported sales of $14.7 billion and gross profits of $6.7 billion. The companies and their political action committees also spend significant sums on political donations and lobbying efforts in Washington, DC. Over the last ten years, Bayer, Syngenta, and Monsanto have spent roughly $55 million, $9 million, and $61 million, respectively, on lobbying activities, according to data from the companies and the Center for Responsive Politics. Since 2002, Bayer's PAC, Syngenta's PAC, and the Monsanto Citizenship Fund (the company's PAC) have donated roughly $2 million, $913,000, and $1.81 million to federal campaigns, according to data from the companies and from MapLight, a Berkeley-based nonpartisan research organization. The congressional hearing on pollinators in April also heavily focused on varroa mites, relying on testimony from Bayer's Fischer and Jeff Pettis, research leader of the USDA's Agricultural Research Service Bee Research Laboratory. No independent scientists or commercial beekeepers were called to testify. Jeff Pettis added that pesticide exposure is a key stress that can weaken bees and make them vulnerable to diseases. Last year, he co-authored a study showing that crop pollination exposes honeybees to pesticides that alter their susceptibility to a certain pathogen. Some argue that the corporate influence on bee research extends to academia as well. "I think there are people that are afraid to publish data for fear of their careers being interfered with by industry," said Maryann Frazier, a honeybee specialist at Penn State's department of entomology (and wife of James Frazier). "There are people within the pesticide community that ... slam this research and these young up-and-coming scientists, because they have said something negative, even if the research has been peer-reviewed." Harvard's Lu said he was surprised by the intensity and the sometimes personal nature of the attacks he faced after he published research unfavorable to neonics. Companies may also be attempting to influence academic research through contributions to universities. According to Bayer's Fischer, the company plans to spend roughly $12 million on bee health in North America this year, with about one-third devoted to research including grants to conservation organizations, contracts with research organizations, and research within universities. The amount Bayer has spent on bee research has increased significantly in recent years, he added. Bryan of Syngenta said the company invested $1.37 billion globally in research and development in 2013. Brennan from Monsanto said the company "does fund a lot of external research from a lot of different backgrounds, including academia." Monsanto spent $1.5 billion on research and development in 2013, according to the company's financial reports, plus $113 million on purchasing Beeologics, the research firm, in 2011. Such research investments can help the companies get the positive press they seek. When Monsanto announced that it had bought Beeologics, the St. Louis Post-Dispatch ran with this headline: "Monsanto buys Beeologics, working to save pollinating bees." While the declining health of honeybees is certainly troubling, other insects and pollinators that are beneficial to our food supply are also under threat. New research raises concerns about the potential harms pesticides carry for a range of species, including birds, aquatic invertebrates, and butterflies. Some environmental advocates and researchers have attributed dramatic declines in monarch butterflies to the widespread use of herbicides, which has killed the milkweed plants on which monarchs depend. "As we've switched to genetically engineered corn that allows us to spray more and more herbicides, we then kill off every piece of vegetation that's around the corn," said Towers, of the Pesticide Action Network. "The butterflies and the bees are just ... indicators of how the landscape has changed so dramatically." While manufacturers present their chemicals as essential to modern agriculture, the widespread use of toxic pesticides is not the only option. Many food policy experts and environmental advocacy groups believe that "integrated pest management" programs - in which pesticides are used as a last resort - are more sustainable in the long-term and less hazardous to pollinators. In this model, growers use a variety of tactics to control pests, such as rotating crops and supporting predators. Instead of "pre-sterilizing" fields with chemicals, as the Center for Food Safety described in its recent report regarding the overuse of neonics, pesticides can be applied only when pest damage poses a serious economic threat. In organic food production, growers don't use any synthetic chemicals at all and only apply pesticides produced from natural sources. Failing to change our current mode of agricultural production could be devastating. If commercial beekeepers can't keep their bees alive, they won't be able to bring their pollination services to the growers who depend on them. "Ten years from now, I don't know whether we will have commercial beekeeping as a career," said the Pesticide Research Institute's Kegley. Further declines in bee pollination could translate to smaller yields and higher prices for a number of crops, including apples, oranges, cherries, and blueberries. And that means a less healthy diet, said Kremen of the UC Berkeley Food Institute, noting that people struggling with malnutrition and obesity need access to affordable fruits and vegetables - foods that largely rely on bee pollination. "It's not a pretty picture." Consider the case of almonds, which rely on pollination from a whopping 60 percent of all managed US honeybee colonies every year, according to the USDA. As the almond industry has boomed in recent decades, the number of honeybee colonies available for pollination services has dropped. At this stage, research shows that the beekeepers are just barely meeting demand. And after the devastating kills this past season, some beekeepers told the EPA that, without meaningful regulatory reforms, they will have to add a pesticide surcharge to almond pollination contracts for 2015, according to the Pollinator Stewardship Council. Other beekeepers, however, may just stay away from the almond groves altogether next year. The risk of severe hive damage is just too great. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - To view the Sierra Club List Terms & Conditions, see: http://www.sierraclub.org/lists/terms.asp